
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 42:399–437 (DOI: 10.1002/�d.520)

Analysis of the local truncation error in the pressure-free
projection method for incompressible �ows: a new accurate
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P. Iannelli† and F. M. Denaro∗;‡

Dipartimento di Ingegneria Aerospaziale e Meccanica; Seconda Universita’ degli Studi di Napoli; Italia

SUMMARY

The numerical integration of the Navier–Stokes equations for incompressible �ows demands e�cient
and accurate solution algorithms for pressure–velocity splitting. Such decoupling was traditionally per-
formed by adopting the Fractional Time-Step Method that is based on a formal separation between
convective–di�usive momentum terms from the pressure gradient term. This idea is strictly related to
the fundamental theorem on the Helmholtz–Hodge orthogonal decomposition of a vector �eld in a �-
nite domain, from which the name projection methods originates. The aim of this paper is to provide
an original evaluation of the local truncation error (LTE) for analysing the actual accuracy achieved
by solving the de-coupled system. The LTE sources are formally subdivided in two categories: errors
intrinsically due to the splitting of the original system and errors due to the assignment of the bound-
ary conditions. The main goal of the present paper consists in both providing the LTE analysis and
proposing a remedy for the inaccuracy of some types of intermediate boundary conditions associated
with the prediction equation. Such evaluations will be directly performed in the physical space for both
the time continuous formulation and the �nite volume discretization along with the discrete Adams–
Bashforth=Crank–Nicolson time integration. A new proposal for a boundary condition expression, con-
gruent with the discrete prediction equation is herein derived, ful�lling the goal of accomplishing the
closure of the problem with fully second order accuracy. In our knowledge, this procedure is new in
the literature and can be easily implemented for con�ned �ows. The LTE is clearly highlighted and
many computations demonstrate that our proposal is e�cient and accurate and the goal of adopting the
pressure-free method in a �nite domain with fully second order accuracy is reached. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of the Navier–Stokes (NS) equations for isothermal, incompressible
�ows deals with the di�culty arising from the speci�c velocity–pressure coupling. In fact,
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owing to the continuity constraint, the pressure characterizes itself only as a Lagrange multi-
plier, not a thermodynamic state variable. Hence, heavy computational procedures are needed
for solving the resultant Stokes-like system. In order to simplify such procedures, the pressure–
velocity de-coupling is often obtained by adopting a fractional time-step method (FTSM),
which is based, in a speci�c formulation suitable for the NS equations, on a formal decompo-
sition of the momentum equation. Speci�cally, the separation between the convective–di�usive
terms (contributing to compute an intermediate non-solenoidal velocity �eld, say v∗) and the
pressure gradient term (afterwards contributing to compute a corrective pure gradient �eld,
say v′) is performed. This idea is strictly related to the Helmholtz–Hodge theorem on the or-
thogonal decomposition of a vector �eld in a �nite domain (e.g. see References [1–5]) from
which the name projection method originates. Thus, a prediction and a projection procedure
are the sequential steps of the FTSM.
Historically, the intermediate �eld v∗ is de�ned into the time-discretized prediction equations

(e.g. see References [2, 6–10]) therefore, its meaning is strongly dependent on the adopted
time integration scheme. Actually, one of the major debates still concerning the accuracy
analysis of the FTSM, is based on the di�erent meanings that v∗ assumes in the discrete or in
the continuous case, respectively. In the �rst case, v∗ is only a mathematical position used for
an intermediate variable while in the second case, it must be assumed to be a time continuous
regular solution of a proper partial di�erential equation. Thus, despite of the fact that proofs of
convergence for the discrete FTSM were reported in Reference [4] since 1969, various analyses
on the accuracy of di�erent methods have vivi�ed the literature (e.g. see References [8–21]),
also within con�icting argumentations. However, some of the papers that have appeared in the
last few years provide a clearer explanation on the nature of the FTSM errors, assessing the
actual accuracy for some types of fractional methods (among others see References [11–19]).
It is known that the original �rst order accurate Chorin’s method causes a numerical bound-

ary layer generated by a mismatch in the boundary conditions for v∗ from the global error
terms. Indeed, the FTSM never satis�es both normal and tangential velocity assignments on
the boundaries [11–21]. The strategy of resetting, after each time step, the tangential com-
ponent to its correct physical value, remains a poorly accurate procedure and can reduce
the smoothness of the velocity �eld [17, 21]. An improvement of the Chorin’s method is
the pressure-free projection method wherein the equation for v∗ is obtained by performing
the semi-implicit multi-step Adams–Bashforth=Crank–Nicolson (in the following indicated as
AB=CN) time integration of the momentum equation and by disregarding the time integral
of the pressure term, thereafter. If such a method is adopted, then the velocity remains sec-
ond order accurate [12], regardless of the �rst order accurate pressure computation. However,
owing to the boundary conditions mismatch, the numerical boundary layer can still appear.
As the FTSM is often practically implemented by means of such integration and the actual
accuracy, which is achieved by solving the de-coupled system, is not exclusively dependent
on that of each step, only the pressure-free projection method will be analysed in this paper.
Though possible, no extension of it to other methods like the incremental pressure ones was
considered.
Generally, any space–time discretized equation is not exactly satis�ed by the true solution of

the partial di�erential counterpart and the discrepancy consists of the so-called local truncation
error (LTE). Thus, the accuracy of the scheme is de�ned by the rate at which the LTE goes
to zero as the integration parameters vanish. In a single time step, the discretization error
(i.e. the di�erence between the true and the numerical solution) is expressed by the LTE
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multiplied by the time step [22]. In this paper, attention is devoted to the evaluation of the
splitting error, i.e. the error introduced by the FTSM, which stands for the counterpart of
the discretization error. Thus, the splitting error expression is �rst determined then the LTE
associated to the FTSM is straightforwardly obtained by simply dividing it by the time step.
From the LTE analysis one can subdivide the error sources in two categories:

(a) Errors intrinsically due to the splitting of the original system;
(b) Errors due to the intermediate boundary condition assignment.

The main goal of the present paper is to provide an insight into the analysis of the above
points by evaluating the LTE and to propose a procedure for improving the accuracy of the
boundary conditions associated to the prediction equation. Such evaluations will be directly
performed in the physical space while the di�erent meanings of the solution v∗ will be high-
lighted. In particular: (1) an ideal exact continuous approach, (2) a continuous decoupled for-
mulation, (3) the discrete AB=CN integration, are addressed. The introduction of the analysis
for the continuous case is motivated by the fact that, in order to close the AB=CN discretized
prediction equation, a similar methodology was proposed in Reference [6], based on Taylor
series, for deriving intermediate boundary conditions. By doing so, it will be shown why that
speci�c partial di�erential equation for v∗ is not consistent with the AB=CN discretization
whilst, the proper approach is shown to be towards the so-called gauge equation [11, 14, 21].
In this framework, by assuming that the solution remains regular over a given space–time
interval (e.g. see the theorem on regularity in Reference [15]), the resulting expressions of
the splitting error vectors are addressed. This way it is shown both the consistency of the
AB=CN scheme towards the gauge equation and its de-coupling resulting from the speci�c
time extrapolation applied on the convective term. Although the spatially continuous analysis
of the pressure-free projection method has already been published, an original contribution of
this paper consists of the LTE evaluation for the discrete formulations, which highlights the
di�erences with the continuous counterparts. In particular, such analyses can be adopted for
expressing the errors in physical space rather than in the transformed space, as it can be done
with the normal mode analysis.
The second order accuracy of the discretized FTSM is maintained all the way up to the

boundary of a �nite computational domain, if correct boundary conditions (the description of
what correct stands for is clearly illustrated in Section 5) are assigned during the prediction
step. In fact, even if v∗ is only a position for the updated discrete velocity, accurate interme-
diate boundary conditions are required owing to the parabolic character of the semi-implicit
AB=CN prediction equation. Thus, the actual accuracy of the FTSM depends on the congru-
ence between such a numerical scheme and the approximate boundary conditions since the
projection step allows us only the imposition of one boundary condition.§ In order to eval-
uate separately from the general accuracy of the FTSM, the LTE analysis of errors like (b)
is performed with non-homogeneous Dirichlet boundary conditions. Then, a new proposal is
herein derived consisting of a boundary condition expression ful�lling the goal of congruence
while accomplishing the closure of the problem with full accuracy when associated with the

§It can be shown that the orthogonal decomposition admits a unique solution in case of either tangential condition
or normal condition assignments.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:399–437



402 P. IANNELLI AND F. M. DENARO

AB=CN prediction equation. In our knowledge, this procedure is new in the literature and can
be easily implemented for con�ned �ows.
After the theory, numerical results are obtained by exploiting a second order �nite vol-

ume (FV) discretization, over two �nite domains with both periodic and Dirichlet boundary
conditions. The accuracy study is based on the exact 2-D solution representing periodic vor-
tex decay into the whole real space (the Taylor solution, dated 1923, e.g. see Reference
[6]). When considering Dirichlet boundary conditions, two di�erent computational domains,
with boundary locations having both a vanishing and non-vanishing normal component of the
pressure gradient, were adopted. This way, one analyses the cases of both orthogonal and
non-orthogonal vector decompositions. In fact, if the boundary layer mode is orthogonal to
the space of divergence-free vector �elds, although created by inconsistent boundary condi-
tions, the projected velocity �eld does not contain such errors. Therefore, in order to force
the error to enter into the solution and assess the actual accuracy a proper domain in which
the decomposition is not orthogonal will be considered.
By summarizing the results of this study, the numerical accuracy analysis, performed in the

L∞ norm (supposed the velocity to be a strong solution of the NS equations), is two-fold:
by taking constant either the mesh size or the Courant number (CFL). In the �rst case, a
description of a possible erroneous interpretation of the results discussed in Reference [8] is
given; this is based on the consideration that the convergence analysis of the discretization
error versus the time step can be misleading. It can be shown that, in a single time step,
the actual slope of the discretization error curve is provided by the LTE magnitude order,
multiplied by the time step (e.g. References [15, 22]). It is clearly shown why, by taking
constant the mesh size, one veri�es a third order slope only for high time step �t, then a
transition to monotonic �rst order slope caused by the O(�th2) term in the splitting error.
This is what one should expect for the fully discretized FTSM as correct behaviour of the
convergence error rate in the L∞ norm. Conversely, by taking the CFL constant, the slope
is monotonically third order for second order spatial discretization. The error of type (b)
is clearly highlighted and many computations demonstrate that our proposal is e�cient and
accurate and the goal of adopting the pressure-free method based on AB=CN scheme with
fully second order accuracy is reached.

2. THE PRESSURE-FREE PROJECTION METHOD FOR CONTINUOUS OPERATORS

Consider, in a �nite domain � the Navier–Stokes equations for isothermal, incompressible,
Newtonian, viscous �ows, written in non–dimensional form

∇ · v ≡D=0 (1)
@v
@t
+∇ · (vv) +∇p′ =∇ ·

(
1
Re

∇v
)

(2)

having posed p′=p=�0U 2
r and Re=UrLr=� the Reynolds number. The problem consists in

�nding the vector �elds v and ∇p′ satisfying (1–2) in �′=�×(t0; t) for given initial v(t0) (for
the sake of brevity, dependence on the position x is herein omitted) and boundary conditions
v(x; t)= v@(t);x∈ @�, assigned along the frontier @.
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Numerical solutions of the equations system (1), (2) require heavy computational e�orts
caused by the velocity–pressure coupling as the pressure is a Lagrangian multiplier, not a
thermodynamic state variable. The splitting methodology, speci�cally devoted to the Navier–
Stokes equations, which is here illustrated, is based on the Helmholtz–Hodge orthogonal
decomposition theorem in a �nite domain [5]. Since the original discrete Chorin’s method [2]
is easily deducible and elsewhere analysed (e.g. Reference [18]), no analysis of it is herein
considered but the pressure-free projection method is focused in the following.
Let us de�ne, in the interval (t0; t), both the local acceleration @tv=: a(t) and the vector

�eld R[v(t)] such that the momentum equation (2) can be recast as

R :=−∇ · (vv) +∇ ·
(
1
Re

∇v
)
= a+∇p′=: a∗ (3)

Let us suppose a∗ to be the time derivative of a continuous vector �eld v∗ (as well as,
in Equation (3) a is the time derivative of v) i.e. @tv∗=: a∗(t); of course, v∗(t) and v(t) are
solutions of two di�erent partial di�erential equations. The �rst question is addressed as: in
order for the solution v∗(t) to be obtained by solving a de-coupled system, in which way
should Equation (3) be approximated?
In fact, given the initial condition according to v∗(t0)= v(t0) (i.e. such that ∇ · v∗(t0)=0 is

ful�lled), from time integration of Equation (3), one has

v∗(t)= v(t) +
∫ t

t0
∇p′ d�= v(t0) +

∫ t

t0
R d� ⇒ v∗(t)= v(t0) + (t − t0)〈R〉(t) (4)

having indicated with the symbol 〈•〉(t) an averaged function obtained by performing the time
integral in the interval (t0; t); thus, in an ideal case, v∗id(t) should be solution of the partial
di�erential equation

@v∗id
@t
=R[v(t)] (5)

Roughly speaking, the intermediate �eld v∗id(t) is related to the function R[v(t)] (that still
depends on pressure terms), therefore Equation (5) remains coupled with the solution of the
continuity equation. This coupling requires a nested iterative solver procedure (similarly to the
Uzawa method) and a heavy computational e�ort. In the spirit of the splitting methodology,
one looks for some approximations allowing us to obtain an equation for determining v∗,
independently from the ful�lment of constraint (1). Thus, in order to clarify what is the
meaning of the intermediate velocity, the focus point to be discussed is the way in which the
vector R can be de-coupled from the pressure gradient.
The main approximation of the FTSM, from which several methods follow, is introduced

at this point; the time evolution of R in the interval (t0; t), is approximated by that of a
vector, say R∗(t), no longer depending on the pressure gradient. Accordingly, Equation (5)
is substituted¶ by @tv∗=R∗, that is a partial di�erential equation governing the evolution

¶From now on, the subscript id will no longer be adopted because the vector v∗ satis�es an approximate momentum
equation.
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of v∗, obtained by disregarding the time contribution of the pressure gradient in 〈R〉(t) (see
Equation (4)).
The choice of a proper expression for R∗ constitutes a crucial point into the discussion

of the FTSM. In fact, several possibilities are allowed to us; if one considers the following
approximation

R∗ :=−∇ · (v∗v∗) +∇ ·
(
1
Re

∇v∗
)

(6)

it can be shown that the di�erence @tv∗ − @tv cannot be expressed as a pure gradient and
this splitting would lead to a velocity �eld that does not satisfy the Navier–Stokes equations.
On the other hand, a similar expression was proposed in Reference [6] even though only for
deriving, from Taylor series, the intermediate boundary conditions for closing the semi-implicit
discretized prediction equation. This fact suggested that, although Equation (6) is not used in
practical computations as a real splitting method, nevertheless it is worthwhile considering it
in the present analysis since, at present, intermediate boundary conditions are often derived
from the proposal in Reference [6].
Besides (6), one can consider also this other approximate form

R∗ :=−∇ · (vv) +∇ ·
(
1
Re

∇v∗
)

(7)

expressing the so-called gauge equation (e.g. see References [14, 21]). Observe that in a
single time interval, the integration of Equation (7) exactly corresponds to that of the gauge
equation illustrated in References [14, 21], the di�erences appearing only in considering more
time steps; anyway, the particular form of Equation (7) implies that the time integration of
the convective term is still formally coupled with the continuity constraint. Furthermore, let
us observe that, given the initial condition, Equations (6) and (7) are exactly coincident at
the initial time t0 since R∗[v∗(t0)]=R[v(t0)]; this feature will be exploited in the context of
the Taylor series for the LTE evaluation.
Similarly, the de-coupled system for the perturbed equation can be also expressed in the

incremental pressure method. Such variation implies the presence of a known gradient term
in R∗ and an update equation for the pressure (e.g. see References [12, 15, 16, 19, 21]),
too. Other splitting methodologies are possible; for example, the discrete unsplit system
can be approximated by a sequence of block-triangular systems (e.g. inexact LU factor-
ization [8, 20]). The sub-problem sequence for velocity and pressure is so performed: the
L-step computes the intermediate velocity �eld while the U -step computes the velocity cor-
rection and the pressure update, respectively. Sometimes the factorization corresponds exactly
to a time discretization of the projection method. Moreover, also the class of the Yoshida
method, based on the regularization of the Laplace operator, can be adopted. The method
is thought to be capable of accounting for the regularizing e�ect of the perturbing term
(pseudo-compressibility scheme-like) within the inexact factorization involving a sequence of
reduced problems. The Yoshida regularization of the Laplace operator allows an incremental
formulation of the splitting to be used [20]. Herein, these fractional methodologies are not
considered.
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In conclusion, whatever is the choice for the approximation R∗, the consequence is that the
formal solution for the intermediate velocity is expressed by

v∗(t)= v(t0) + (t − t0)〈R∗〉(t) (8)

Such a velocity �eld does not necessarily provide the correct vorticity �eld V(t) being
V(t)=∇∧ v(t) �=∇∧ v∗(t)= V(t0) + (t − t0)∇∧〈R∗〉(t); the ful�lment depends on the chosen
function R∗. From now on, according to the splitting idea, v∗ is no longer the solution of
Equation (5) but is that one expressed‖ by the prediction equation (8), associated to Equation
(6) or (7).
As the vector v∗(t) does not necessarily ful�l the constraint (1), being in general ∇ · 〈R∗〉 �=0,

the projection step allows us to determine a corrective vector �eld, say v′(t). It is expressed,
by de�nition, as a pure gradient of a time-averaged scalar function 〈�〉 in such a way that
v∗(t) − v′(t)=: ṽ(t) is a divergence-free vector (v′(t0)= 0 if the initial state is chosen such
that ∇ · v∗(t0)=0) which approximates the exact solution v(t) of the original coupled system
(1), (2).
In general, the projection equation can be so constructed: after the �eld v∗(t) is determined

by means of Equation (8) with some type of expression for R∗, the pure gradient �eld is
obtained by ful�lling the constraint ∇ · v′(t)=∇ · v∗(t) and solving the elliptic equation

∇2〈�〉(t)= 1
t − t0 ∇ · v∗(t)=∇ · 〈R∗〉(t) (9)

that allows us the projection of the velocity �eld v∗ onto the space of divergence-free vectors.
In order that problem (9) is well posed, only one condition is imposed on @, generally the
normal derivative according to

∫
@� @n〈�〉 dS=

∫
@� n · 〈R∗〉 dS. The ful�lment of this condition

accomplishes the compatibility constraint for Neumann problems, ensuring the existence and
uniqueness of the solution of (9) (apart a constant value) [5]. According to the potential
character of the correction �eld, one has

v′(t) ≡
∫ t

t0
∇� d�=(t − t0)∇〈�〉(t) (10)

and the �nal velocity �eld will be expressed by

ṽ(t)= v∗(t)− v′(t)= v(t0) + (t − t0)[〈R∗〉(t)−∇〈�〉(t)] (11)

that is the approximation to the exact velocity v(t) to be analysed. The way in which these
approximations are congruent to the accuracy of a chosen numerical scheme, will be the
subject of the analysis in Section 4. Therein, the expressions for the LTE in the continuous
and discrete form will be provided.

‖ It is worthwhile observing that the �eld v∗ is not continuous outside the time interval: for a given t=T; v∗(T−)
and v∗(T+) assume a di�erent limiting value because, between two consecutive prediction steps, the �eld v∗
computed in the �rst one is disregarded and v∗(T )= v(T ) will be reassigned as new initial condition for the second
one. Practically, the �eld v∗ is an auxiliary function that exists only in each time interval and is disregarded
thereafter.
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3. THE PRESSURE-FREE PROJECTION METHOD FOR DISCRETE OPERATOR:
THE SECOND ORDER ACCURATE ADAMS–BASHFORTH=CRANK–NICOLSON

TIME INTEGRATION

Often the semi-implicit second order accurate, Adams–Bashforth scheme for the convective
term Rc ≡ −∇·(vv)=R−(1=Re)∇2v and the Crank–Nicolson scheme for the di�usive term can
be exploited [6, 8, 11, 17, 20, 21]. While retaining the continuous form of the spatial operators,
such kind of integration is now considered. Therefore, for prescribed divergence-free velocity
vectors vn and vn−1, by integrating Equation (2) in the interval (t n; t n+1 = t n +�t), one has(

I − �t
2Re

∇2
)
vn+1 =

(
I +

�t
2Re

∇2
)
vn +

�t
2
(3Rnc −Rn−1c )

−
∫ t n+1

t n
∇p′ dt +O(�t3); x∈�

v@(t n+1)= vn+1@ ; x∈ @�

(12)

wherein superscript notation on v indicates the time-discrete level of the state vectors. It is
worthwhile remarking how the provisional �eld has not yet been introduced but the AB=CN
time discretization of the momentum equation is �rstly performed. The velocity �eld vn+1 is
that one which would correspond to the numerical solution of the coupled equation system
(1), (2), associated with the physical boundary conditions. This should be considered the
second order accurate in time solution, adopted for reference.
By eliminating from Equation (12) the integral of the pressure gradient and truncating, the

discrete equation for computing the intermediate �eld v∗n+1 is expressed by

q :=
(
I − �t

2Re
∇2

)
v∗n+1=

(
I +

�t
2Re

∇2
)
vn +

�t
2
(3Rnc −Rn−1c ); x∈�

v∗(t n+1)=v∗n+1@ ; x∈ @�
(13)

Owing to the AB time extrapolation, such an equation has the distinctiveness, of being
decoupled from continuity as the divergence-free velocity vectors are known (i.e. v∗n= vn and
v∗n−1 = vn−1) whereas the CN integration leads to a semi-implicit scheme in the unknown
v∗n+1. Actually, while in Equation (12) the boundary condition was directly expressed in terms
of the physical velocity �eld vn+1@ , now this is no longer possible. The parabolic problem (13)
is associated with some type of numerical boundary condition that are not explicitly known
but have to be expressed as function of the known physical velocity values, as it will discussed
in Section 5. Furthermore, as Equation (13) should represent the time discretization of the
continuous equation @tv∗=R∗, it is necessary to determine which one of expressions (6) or
(7) is implicitly discretized.
According to classical procedures, one �rst solves problem (13) for determining v∗n+1;

∀x∈�, then solves the projection step constituted by the Poisson problem:

∇2〈�〉n+1 = 1
�t

∇ · v∗n+1; x∈� (14)1

n · ∇〈�〉n+1 = 1
�t
n · (v∗n+1 − vn+1@ ); x∈ @� (14)2
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that admits a unique solution (apart from a constant), being the compatibility condition veri�ed
by the Neumann boundary conditions (14)2 with the integral continuity constraint.∗∗

Eventually, one adds to v∗n+1 the corrective velocity potential v′, expressed as the pure
gradient of 〈�〉n+1

ṽn+1 = v∗n+1 − v′= v∗n+1 −�t∇〈�〉n+1; x∈� (15)

As a consequence, the projection step (14) will ensure that ṽn+1 is a divergence-free �eld
having the correct normal component of the velocity on @ (i.e. n · vn+1@ = n · ṽn+1@ ) but not
necessarily ful�lling also the tangential requirement (i.e. t · vn+1@ = t · ṽn+1@ + O(�tk)). It is
worthwhile noting that, if n · vn+1@ =0, Equation (15) is the unique orthogonal decomposition
[5] of v∗n+1.
Furthermore, there exists a functional relation between ∇p′ and ∇�, that is determined by

substituting Equation (15) into the LHS of (12) so that, in order to get a consistent second
order approximation of ṽn+1 to vn+1 while verifying Equation (13), the following relationship
must apply: (

I − �t
2Re

∇2
)
∇〈�〉n+1 =∇〈p′〉n+1 (16)

which clari�es the role of the computed scalar function. In fact, ∇〈�〉n+1 is only a �rst order
approximation of the pressure gradient needed in (12), the di�erence consisting of a pure
gradient only when gradient and Laplacian operators do commute.
A further fundamental question, to be brie�y addressed, arises in discerning which partial

di�erential equation would Equation (13) tend to for vanishing time step?
First, it is easy to see that Equation (13) cannot represent the AB=CN discretization of the

ideal case (Equation (5) discussed in Section 2) since, although the vectors Rnc and Rn−1c
correctly appear in the RHS, the di�usive term in the LHS is not that one which would
be required, that is (v∗n+1 − (�t=2Re)∇2vn+1). As a matter of fact, by means of the AB
discretization of the di�usive term, one could obtain a congruent second order discretization
of Equation (5), too. Indeed, from a discrete viewpoint, Equation (5) would be decoupled
from the pressure by adopting any explicit multi-step schemes of arbitrary accuracy order
(such as Adams–Bashforth type methods); unfortunately, the numerical stability constraint is
not feasible. Thus, one must analyse the consistence of (13) towards some other di�erential
equation expressed by means of either Equation (6) or (7).
With reference to (6), one can easily see that Equation (13) does not express the AB=CN

integration of @tv∗=R∗; this turns out as, while is Rnc =R∗n
c from the initial condition, the

vector Rn−1c instead of that R∗n−1
c is considered (owing to the discontinuous character of v∗,

v∗n−1 is disregarded outside the interval (t n, t n+1) and they are di�erent).

∗∗This kind of boundary condition accomplishes the fact that neither pressure nor intermediate velocity values
are required on the boundary, but only the knowledge of the exact normal velocity is necessary. The �nal result
expressed by (14) consists of an equivalent Poisson problem with homogeneous Neumann boundary conditions
and a modi�ed source term, obtained when the divergence operator is de�ned onto the subspace of vectors with
normal component on the boundary equal to the normal velocity component; this equivalence does not imply that
the computed pressure �eld has a vanishing normal derivative on the boundary.
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Conversely, with reference to Equation (7), in the limit for �t→ 0 one sees that Equation
(13) represents the proper AB=CN discretization of the gauge equation @tv∗=Rc +1=Re∇2v∗.
Although the analysis of the FTSM, for spatially continuous variables, was already described

in recent [11–19] papers by means of the normal mode analysis, the original contribution of
the next sections is that they illustrate the expressions of the splitting errors directly in physical
rather than in transformed space. Our analysis is not the goal of debating those conclusions
but is that of highlighting the fundamental di�erences between the continuous and the semi-
implicit AB=CN approaches. Furthermore, it is performed in order to introduce the reader to
the evaluation of the next proposal for a boundary condition equation, which is congruent to
the correct di�erential equation. In fact, it will be shown that numerical boundary conditions
in (13) have to be deduced while ful�lling the consistence with Equation (7).

4. THE SPLITTING ERRORS IN THE SOLUTION OF NAVIER–STOKES
EQUATIONS ALONG WITH CONTINUOUS AND DISCRETE OPERATORS

In a �rst order accurate splitting methodology one simply replaces the exact solution operators
with a sequence of numerical operators whereas in developing higher order methods, it is
important to evaluate the splitting error that is introduced by the factorization. Therefore, as
the FTSM is based on the separation between the pressure term and the convective–di�usive
terms, even if each computational step is solved at high accuracy, the global error on ṽ
depends on some issues to be analysed.
Discretization and local truncation errors are the elements usually considered in numerical

analysis for addressing the order of accuracy of a method. In general, the LTE is de�ned by
the di�erence between a partial di�erential equation and its space–time discrete counterpart.
The order of accuracy of a numerical scheme is de�ned by the rate at which the leading
term of the LTE goes to zero for vanishing integration parameters. Moreover, in one time
step, the discretization error i.e. the di�erence between the true and the numerical solution
(which is the most adopted error measure), relates to the LTE by the time step [22] and this
concept is now extended to the system splitting. Thus, the splitting error vector expression
is determined and the LTE associated to the FTSM can be deduced in a straightforward way,
by simply dividing the splitting error for the time step. This idea is formalized in Appendix
A and represents the guideline of the next sub-sections. The splitting error expressions are
now determined in the physical space for the cases of an analytical evaluation of v∗(t) based
�rst on Equation (6) and then on (7).

4.1. The splitting error with continuous operators

Let us again consider the momentum equation (2), rewritten as

@v
@t
=R+ P≡ (Lc + Ld)v+ P (17)

having de�ned both the convective Lc≡∇ · [v(•)] and the di�usive Ld ≡∇ · [∇(•)=Re] opera-
tors that act on the vector v, while having posed P=−∇p′. Suppose that only Ld does not
depend on time so that, by adopting the Taylor series about t0, one can write (for the sake
of brevity �t= t − t0) the exact solution of the unsplit NS system, according to the solution
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operator de�ned in Appendix A, writes as

v(t) = v(t0) + �t
@v
@t

∣∣∣∣
t0

+
�t2

2
@2v
@t2

∣∣∣∣
t0

+ · · · =
∞∑
j=0

�tj

j!
@j

@tj

∣∣∣∣
t0

v≡ e�t @=@t|t0 v

= v(t0) + �t[〈R〉(t) + 〈P〉(t)] (18)

wherein, under suitable regularity hypotheses on the initial data [15], the time derivatives can
be expressed (by posing L=Lc + Ld, one has @tL= @tLc =−∇ · [@tv(•)]= −∇ · [(R+P)(•)])
by making successive derivatives of (17). For our goal, the second order terms are required,
thus only the second derivative

@2v
@t2

=
@
@t
(R+ P)=

@Lc
@t
v+ L

@v
@t
+
@P
@t
=−∇ · [(R+ P)v] + L(R+ P) + @P

@t
(19)

is expressed. In an analogous manner, one can formally rewrite the solution (8) as

v∗(t) = v∗(t0) + �t
@v∗

@t

∣∣∣∣
t0

+
�t2

2
@2v∗

@t2

∣∣∣∣
t0

+ · · · =
∞∑
j=0

�tj

j!
@j

@tj

∣∣∣∣∣
t0

v∗ ≡ e�t @=@t|t0 v∗

= v(t0) + �t〈R∗〉(t) (20)

wherein, v∗(t) is the solution of the convection–di�usion equation @tv∗=R∗ therefore, higher
time derivatives in (20) must be congruently expressed �rst by making successive time deriva-
tions of R∗, then by evaluating the resulting functions at the time t0 and exploiting the initial
condition.
According to the expression (48) in Appendix A, the splitting error for time continuous

operators is formally de�ned as the di�erence between the exact solution (18) and the solution
(11) obtained from the decoupled system, i.e. efs(t)= (v(t) − ṽ(t)). Two cases of possible
expressions, depending on either Equation (6) or (7) respectively, will be now considered.

4.1.1. The splitting error analysis: case 1. Although expression (6) is never used as practi-
cal splitting methodology, nevertheless, a similar expression was proposed in Reference [6]
speci�cally built for deriving second order accurate intermediate boundary conditions. There-
fore, this analysis is now performed because it will be shown that those boundary conditions
lead to a LTE on the boundary equivalent to the below expressed splitting error.
If one adopts expression (6) into expansion (20), then one has R∗=L∗v∗ wherein, being

L∗=L∗c + L
∗
d ≡ −∇ · [v∗(•)] + Ld, it results @tL∗= @tL∗c =−∇ · [@tv∗(•)]=−∇ · [R∗(•)] along

with the second derivative

@2v∗

@t2

∣∣∣∣
t0

=
@R∗

@t

∣∣∣∣
t0

=
(
@L∗c
@t
v∗ + L∗

@v∗

@t

)∣∣∣∣
t0

= [−∇ · (R∗v∗) + L∗R∗]|t0

≡ [−∇ · (Rv) + LR]|t0 (21)

having exploited the initial condition v∗(t0)= v(t0) allowing us to get R∗(t0)=R(t0),
∇ · [R∗(•)]|t0 =∇ · [R(•)]|t0 and so on for other similar terms. Now, by using Equations (19)
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and (21), one expresses the splitting error up to third order terms:

efs(t) = v(t)− v∗(t) +�t∇〈�〉(t)= e�t@=@t|t0 v − e�t@=@t|t0 v∗ +�t∇〈�〉(t)
= e�t @=@t|t0�t(〈R〉 − 〈R∗〉) + e�t @=@t|t0�t〈P〉+�t∇〈�〉(t)

= �t[∇〈�〉(t) + 〈P〉(t)] + �t[R(t0)−R∗(t0)] +
�t2

2
@(R −R∗)

@t

∣∣∣∣
t0

+O(�t3)

=�t[∇〈�〉(t) + 〈P〉(t)] + �t
2

2
{[L(R+ P)]|t0 −∇ · [(R+ P)v]|t0︸ ︷︷ ︸

@R=@t|t0

− [(LR)|t0 −∇ · (Rv)|t0 ]}︸ ︷︷ ︸
@R∗=@t|t0

+O(�t3)

=�t[∇〈�〉(t) + 〈P〉(t)] + �t
2

2
{LP−∇ · (Pv)}|t0 +O(�t3)≡�t(LTE) (22)

Consider now the L∞ norm on the error; it follows ‖efs‖∞=�t‖LTE‖∞ that is the equiv-
alent of the relation between the discretization and the local truncation error existing, for
a linear scheme (e.g. see: Reference [22]), in one time step. Therefore, from examination
of the leading term of (22) one can deduce ‖LTE‖∞=(‖∇[〈�〉(t) − 〈p′〉(t)] + �t(· · ·)‖∞)
and, for the projection method to be consistent, it must result ∇[〈�〉(t) − 〈p′〉(t)]=O(�t),
at least. As a result of the adoption of Equation (6) for R∗, even if one computed the exact
pressure gradient, nevertheless the LTE would remain �rst order of magnitude, regardless of
the accuracy in the solution of each single step.

4.1.2. The splitting error analysis: case 2. If one adopts Equation (7) into expansion (20)
then one has R∗=Lcv+ Ldv∗ and the second derivative can be expressed as

@2v∗

@t2

∣∣∣∣
t0

=
@R∗

@t

∣∣∣∣
t0

= {−∇ · [(R+ P)v] + Lc(R+ P) + LdR∗}|t0

≡ {−∇ · [(R+ P)v] + LcP+ LR}|t0 (23)

According to that performed in Equation (22), one has

efs(t) = v(t)− v∗(t) +�t∇〈�〉(t)

=�t[∇〈�〉(t) + 〈P〉(t)] + �t[R(t0)−R∗(t0)] +
�t2

2
@
@t

∣∣∣∣
t0

(R −R∗) +O(�t3)

=�t[∇〈�〉(t) + 〈P〉(t)] + �t
2

2
{[L(R+ P)]|t0 −∇ · [(R+ P)v]|t0︸ ︷︷ ︸

@R=@t
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−(LcP)|t0 − (LR)|t0 +∇ · [(R+ P)v]|t0}︸ ︷︷ ︸
@R∗=@t

+O(�t3)

= �t[∇〈�〉(t)−∇〈p′〉(t)]− �t2

2Re
∇2∇p′

∣∣∣∣
t0

+O(�t3)

=�t∇〈�〉(t)−�t
(
I +

�t
2Re

∇2
)
∇〈p′〉(t) +O(�t3)≡�t(LTE) (24)

From examination of expression (24) one gets some important conclusions; this time the
LTE has no longer a �rst order magnitude since, by means of Equations (8) and (18) it is
v(t) − v∗(t)= ∫ t

t0
(R − R∗) d� −�t∇〈p′〉(t) and by introducing the velocity correction v′ one

has that the relation �t∇〈p′〉(t)= [I− 1
Re∇2

∫ t
t0
(•) d�]v′= v′(t)− �t

2 Re∇2[v′(t)+v′(t0)︸ ︷︷ ︸
=0

]+O(�t3)

applies. Thus, the splitting error (24) is expressed as

efs(t) =�t
[
I −

(
I +

�t
2Re

∇2
)(

I − �t
2Re

∇2
)]

∇〈�〉 (t) +O(�t3)

=O(�t3)=�t(LTE) (25)

thus, with regard to the velocity, this method proves to be second order accurate. Such a
result does not require the commutation property between Laplacian and gradient operators
and is not unexpected [14, 21] because, the gauge equation expressed by (7) is still coupled
to the pressure �eld and the method is not a fractional one. In the context of the continuous
formulation, the problem of the pressure de-coupling is still unresolved and the next section
explains the di�erence arising from the time-discretized counterpart.

4.2. The splitting error with the AB=CN time integration and continuous space operators

It was observed in Section 3 that the use of the AB=CN time integration allows us the
decoupling of the prediction equation (13) from the pressure �eld. This feature highlights
the di�erent meanings of the velocity v∗ in case of the continuous di�erential gauge equation
(where it remains coupled to the pressure) and that of the AB=CN time discretization. Actually,
the obtained decoupling is a real advantage only if a third order splitting error is ensured.
Let us now analyse the splitting error for time-discretized operators, which is formally de-

�ned as the di�erence between the exact solution (18) and the solution (15), i.e.
en+1fs =(v

n+1 − ṽn+1). In this case, the error en+1fs is expressed, up to third order terms, ac-
cording to

en+1fs = vn+1 − (v∗n+1 − v′)= e�t @=@t|nv −
(
I − �t

2Re
∇2

)−1
q+ v′

= vn +�t
@v
@t

∣∣∣∣n + �t22 @2v
@t2

∣∣∣∣n − (
I +

�t
2Re

∇2 +
�t2

4Re2
∇2∇2

)
q+ v′ +O(�t3)
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= vn +�t(Rn + Pn)− �t2

2

{
∇ · [(Rn + Pn)vn]− Ln(Rn + Pn)− @P

@t

∣∣∣∣n}

−
(
I +

�t
2Re

∇2 +
�t2

4Re2
∇2∇2

)
q+ v′ +O(�t3)

=�t
(
Pn +

�t
2
@P
@t

∣∣∣∣n + · · ·
)

︸ ︷︷ ︸
∇〈p′〉n+1

+
�t2

2Re
∇2Pn + v′ +O(�t3)

=�t∇[〈�〉n+1 − 〈p′〉n+1]− �t2

2Re
∇2∇p′n +O(�t3)=O(�t3)≡�t(LTE) (26)

wherein, under suitable hypothesis (see Reference [23]), the inverse operator was expressed
in a power series (I −�t=2Re∇2)−1q=(I +�t=2Re∇2 + · · ·)q; furthermore, the facts that
the computed �eld ∇〈�〉n+1 satis�es Equation (16) and that ∇p′n=∇〈p′〉n+1 + O(�t) were
also exploited. In conclusion, the LTE has second order magnitude, in contrast to what is
stated in Reference [8]: the �rst order accuracy in the velocities is not due to boundary
conditions, but due to the method itself because the discrete operators ∇̂2 and ∇̂ do not
commute (for example in case of non-periodic boundary conditions). Conversely, by looking
at Equation (26) one can conclude that the second order accuracy (for the velocity) of the
pressure-free FTSM (with reference to the LTE) is always maintained, consistently to the
AB=CN discretization, without requiring the commutative property of the spatial operators to
be veri�ed; such a conclusion accords for example to those reported in Reference [21].
These analyses do not pretend to invalidate some published results that, while adopting other

types of analysis, similarly demonstrate second order accuracy. Our aim was rather to show the
splitting errors in the physical space and to relate them to the LTE in a straightforward way for
practical purposes. In particular, it can be highlighted that, by extending the expression (26) to
fourth order terms, one could perform an explicit spatial discretization of en+1fs and correct again
the velocity �eld ṽn+1 to third order accuracy, while retaining the AB=CN integration. However,
such corrections must ful�l the continuity constraint by building a speci�c computational step;
thus, this issue requires further study and is not extended in this paper. Actually, by exploiting
the results of our analysis, we focus on the aim of maintaining the global accuracy all to way
up to the boundary of a �nite domain when non-homogeneous Dirichlet boundary conditions
are assigned. In fact, we are now able in discriminating the peculiarity of the application of
the FTSM into the interior of a �nite domain from the application of the expression (6) for
deriving intermediate boundary conditions.

4.3. Numerical accuracy study of the splitting errors

In order to assess the conclusions of the previous analyses, some numerical experiments on the
continuous and discrete formulation have been performed. Let us �rst assume the following
2-D exact solution of Equations (1), (2) into the whole space [−∞;∞]2 for the Reynolds
number Re=1 (see for example Reference [6])

u(x; y; t)= − cos x sin ye−2t (27)1
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v(x; y; t)= sin x cosye−2t (27)2

p′(x; y; t)=−0:25(cos 2x + cos2y)e−4t (27)3

that depicts the vortex decay, studied by Taylor in 1923. When a �nite domain �1 = [−�; �]×
[−�; �] is considered and the solution on its boundary @�1 is expressed as prolongation
of (27)1;2, one can consider the properties required for obtaining a unique orthogonal de-
composition. Both the acceleration a and pressure gradient �elds are graphically depicted in
Figures 1(a), 1(b) at time t=0 from which one sees that n · ∇p′=0 is accomplished along the
boundaries. However, despite of the fact that n · a �=0 on the boundaries, in [−�; �]2× [0;∞]
one gets

∫
�1
a · ∇p′ dV =

∫
@�1
n · ap′ dS=0, therefore (a;∇p′) (or, equivalently, (v;�t∇〈p′〉)

the decomposition of the vector v∗) expresses an orthogonal decomposition of the vector
�eld a∗ but not a unique one. A deeper analysis of the application of the Helmholtz–Hodge
decomposition in projection methods is reported in [24].
If the boundary layer mode is orthogonal to the space of divergence-free vector �elds,

although created by inconsistent boundary conditions, the projected velocity �eld does not
contain such errors and full second order accuracy on the velocity is retained all the way up
to the boundary. Therefore, in order to force the error to enter into the solution and assess
the actual accuracy, a second �nite domain �2 = [0; �]× [0; 1] (represented in Figure 1 by the
dotted box), in which the decomposition (v;�t∇〈p′〉) is not orthogonal, will be considered
in Section 5.

4.3.1. Numerical accuracy study of cases 1 and 2 along with continuous operators. The
analytical expression (22) and (24) that were obtained for the splitting errors, are now nu-
merically assessed. According to the FTSM, the approximate solution to be analysed, is now
expressed as

ṽ(t)= v∗(t)− v′(t)= v(t0) + �t @v
∗

@t

∣∣∣∣
t0

+
�t2

2
@2v∗

@t2

∣∣∣∣
t0

−�t∇〈�〉(t) +O(�t3) (28)

wherein the two time derivatives are analytically evaluated as combinations of the spatial
derivatives of the exact solution (27)1;2 at time t0, according to expressions (6) or (7) for
R∗. Furthermore, in order to analyse only the in�uence of the second and higher order terms
in the (28), ∇〈�〉(t)=∇〈p′〉(t) is assigned from (27)3. The error efs(t)= (v(t) − ṽ(t)) has
been evaluated for vanishing �t in the L∞ norm over the �nite domain �1 on a (21× 21)
computational grid. Since this analysis concerns with the splitting error of type (a), i.e. without
con�nement, only such domain, wherein the decomposition is a priori orthogonal, was herein
considered. All computations have been performed for a single time step so that the order of
magnitude of efs results �t times that of the LTE.
Starting from case 1 (R∗ given by Equation (6), see Section 4.1.1), the error curve is

computed by exploiting Equations (28) and (20), (21), (27) while assigning ∇〈�〉=∇〈p′〉.
The error convergence rate is shown in Figure 2; curve 1 represents the error versus the
time step in a double logarithmic scale only for the u velocity component, the error on v
being the same. The curve has a second order slope, which demonstrates that, albeit the third
order expansion (28) has been adopted, the error is only �rst order accurate in time since
‖efs‖∞=�t(‖LTE‖∞)=�tO(�t)=O(�t2). The correctness of the analysis is also con�rmed
by the fact that curve 2, representing the L∞ norm applied only on the second order terms

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:399–437



414 P. IANNELLI AND F. M. DENARO

X

Y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

X

Y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a)

(b)

Figure 1. (a) Vector plot of the Eulerian acceleration a(x; 0) in �1 = [−�; �]× [−�; �]. The dot-
ted box �2 = [0; �]× [0; 1] represents a �nite domain in which the decomposition is not orthogonal.
(b) Vector plot of ∇p′(x; 0) in �1 = [−�; �]× [−�; �]. Note that the boundaries plot has been removed
for highlighting the tangential direction of the vectors along the frontier. For a better visualisation, the

vector length of Figure 1(a) has been now doubled.

�t2=2[v∇2p′ +∇p′ · (∇v) + v · (∇∇p′)−∇2∇p′=Re]|t0 in the error expression (22) tends, for
small �t, to become coincident to the curve 1 towards a unique second order slope, according
to the analysis that predicts �rst order accuracy of the FTSM based on (6).
On the other hand, considering case 2 (R∗ given by Equation (7), see Section 4.1.2), the

expansion (28) must be computed with the second derivative provided by Equation (23) and
∇〈�〉(t) must be assigned according to Equation (16). Similarly to what was performed in
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Figure 2. Analysis of the accuracy order for the FTSM with continuous operators based on Equa-
tion (6). Curve 1: L∞ norm on efs(t); Curve 2: L∞ norm of the second order terms appearing at the end

of Equation (22). For small �t, the two curves tend to become coincident.

the previous computations, the error is computed in L∞ norm by exploiting Equations (28)
and (20), (23), (27) and assigning ∇〈�〉(t)= (I +�t=2Re∇2 + · · ·)∇〈p′〉(t). The results are
shown in Figure 3 versus the time step in a double logarithmic scale. In such �gure, the
third order slope of the error curve demonstrates that the adoption of (7) for evaluating the
intermediate velocity is appropriate.

4.3.2. Numerical accuracy study based on the AB=CN time integration along with continu-
ous space operators. Now, the error expression (26) (see Section 4.2) is veri�ed by computing
v∗n+1 by means of the approximate inversion of the operator in the LHS of Equation (13)

v∗n+1 =
(
I − �t

2Re
∇2

)−1
q=

[
I +

�t
2Re

∇2 +
(
�t
2Re

∇2
)2
+ · · ·

]
q (29)

that, according to the second order accuracy, can be truncated after the �rst three terms.
This way, it is allowed us to determine v∗n+1 by means of an analytical evaluation of the
space derivatives of u and v given by (22)1;2 evaluated at t n and t n−1. Hence, Equation (29)
is explicit and, therefore, to compute v∗n+1 in � is not required any approximation for the
boundary conditions v∗n+1@ . Thus, only the actual accuracy of the splitting (error type a) is
evaluated. As it regards with the potential correction, according to the functional relation
expressed in Equation (16), the gradient ∇〈�〉n+1 = (I +�t=2Re∇2 + · · ·)∇〈p′〉n+1 has been
assigned, again by means of an analytical evaluation of the spatial derivatives of Equation
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Figure 3. Analysis of the accuracy order for the FTSM with continuous operators based on Equation
(7) Curve 1: L∞ norm on the errors efs(t) shown versus the time step in a double logarithmic scale

only for the u velocity component (the error on v being the same).

(27)3. Clearly, Laplacian and gradient operators do commute in the periodical case and one
obtains a pure gradient term. The error on the u velocity component is still computed for
vanishing time steps in the L∞ norms; the third order slope of curve 1 in Figure 4 clearly
con�rms that the velocity ṽn+1 is a third order approximation to vn+1. Of course, what is
inadequate is that the �eld ∇〈�〉n+1 remains a �rst order accurate approximation of the actual
pressure gradient. On the other hand, in the pressure-free methodology, one always computes
only ∇〈�〉n+1 whereas the knowledge of actual pressure ∇p′ is, usually, never required.
One can draw an important conclusion: the gauge equation is accurate and, owing to the AB

extrapolation, can be congruently decoupled from pressure. The present study indicates that,
by means of the AB/CN scheme, the discretization error in the computation of the velocity
is always third order in a single time step, independently from the commutation property of
the gradient and Laplacian operator. In the next section, a numerical analysis for the AB=CN
time integration, but associated to a second order Finite Volume discretization along with both
periodical and Dirichlet boundary conditions, will be presented. This analysis is performed in
order to clarify the sources of the errors of type (b) that many times has generated controversy
in the published analyses.

4.3.3. Numerical accuracy study based on the AB=CN time integration along with second
order �nite volume space discretization. Now, a numerical accuracy study of the FTSM
along with a space–time second order discretization is shown. In order to accomplish the
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Figure 4. Analysis of the accuracy order for the FTSM based on AB=CN second order scheme (13).
Curve 1: the errors, computed in the L∞ norm in the domain �1, are shown versus the time step in a

double logarithmic scale only for the u velocity component (the error on v being the same).

spatial discretization, a �nite volume (FV) scheme has been adopted for discretizing
the operators in the integral form of Equations (1), (2) written over N control
volumes.
A slight modi�cation of the time integration procedure is performed: only the y-di�usive

component has been discretized with the Crank–Nicolson scheme while the x-one has been
computed within the Adams–Bashforth integration, as well as the other convective terms. This
is done since such kind of discretization is a useful model for simulating 3-D con�ned �ows.
In fact, because of the thin boundary layers along the walls, the normal wall derivatives are
greater in magnitude than the stream-wise ones and therefore a stretched grid, normal to the
wall, is necessary. Thus, owing to stability restrictions, an implicit Crank–Nicolson integration
of the di�usive terms in normal direction is considered (e.g. see Reference [25]). A further
advantage is also deduced from the previous analysis because, by computing the x-di�usive
component with the Adams–Bashforth scheme, the �rst order pressure error remains only
due to the y-component of Laplacian operator and, therefore, is proportional (see Equation
(16)) to the second derivative along y of the pressure gradient that in the boundary layer
almost vanishes. The discretized constraint D=0 is supposed to be satis�ed, in an approximate
projection, by the vector ṽ only to within the local truncation error of the scheme (e.g. see
Reference [26]). Hence, the NS system is rewritten according to the integral pressure-free
FTSM:
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Prediction step:∫
�k

(
I − �t

2Re
@2

@y2

)
v∗n+1 dV

=
∫
�k

(
I +

�t
2Re

@2

@y2

)
vn dV

+
�t
2

∫
�k

[
1
Re

(
3
@2vn

@x2
− @2vn−1

@x2

)
+ 3Rnc −Rn−1c

]
dV; x∈�

v∗n+1@ =f(v); x∈ @�

Projection step: ∫
@�k

n · ∇〈�〉n+1 dS = 1
�t

∫
@�k

n · v∗n+1 dS; x∈�

n · ∇〈�〉n+1 = 1
�t
(v∗n+1 − vn+1@ ); x∈ @�

Correction step: ∫
�k

ṽn+1 dV=
∫
�k

v∗n+1 dV −�t
∫
@�k

n〈�〉n+1 dS; x∈�

vn+1=vn+1@ ; x∈ @�
(30)

A Cartesian uniform structured 2-D computational grid is adopted over �1. If the control
point (i; j) is the centre of �k and the measure of �k is space-independent (integrals and
derivatives do commute), the second order discretization can be written according to (the
notation of shift operator is introduced):
Prediction step:(

I − �t
2Re

E−�y − 2I + E�y
�y2

)
i; j
v∗n+1

=
(
I +

�t
2Re

E−�y − 2I + E�y
�y2

)
i; j
vn

+
�t
2

[
1
Re

(
E−�x − 2I + E�x

�x2

)
i; j
(3vn − vn−1) + (3R̂nc − R̂n−1c )i; j

]
;

xi; j ∈� (31)1
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Projection step:[
�y
�x
(E(�x=2) − E−(�x=2))i; j(E(�x=2) − E−(�x=2))

+
�x
�y

(E(�y=2) − E−(�y=2))i; j(E(�y=2) − E−(�y=2))
]
〈�〉n+1

=
�y
�t
(E(�x=2) − E−(�x=2))i; j u∗n+1

+
�x
�t
(E(�y=2) − E−(�y=2))i; jv∗n+1; xi; j ∈� (31)2

(E±(�x=2))i; j

(
E(�x=2) − E−(�x=2)

�x

)
〈�〉n+1

=
1
�t
(E±(�x=2))i; j(u∗n+1 − un+1@ ); xi±�x=2;j ∈ @� (31)3

(E±�y=2)i; j

(
E(�y=2) − E−(�y=2)

�y

)
〈�〉n+1

=
1
�t
(E±(�y=2))i; j(v∗n+1 − vn+1@ ); xi; j±�y=2 ∈ @� (31)4

Correction step:

ṽn+1i; j = v
∗n+1
i; j −�t∇̂〈�〉n+1i; j ; xi; j ∈� (31)5

where R̂c indicates a standard second order central discretization of the convective terms. The
elliptic equation is discretized in the same velocity location by a �ve-point stencil. This way
leads to the approximate projection method (e.g. see Reference [26]) and continuity is satis�ed
up to the local truncation error of the projection equation; owing to the strong coupling of
the stencil, there are no spurious modes associated to the pressure solution.
It is fundamental to observe the way in which the space discretization a�ects the LTE

as it is expected that the splitting error due to the FTSM (31) should be in the form
en+1fs =�t(LTE)=�tO(�t

2;�x2;�y2). Similarly to what is done in Reference [8], a uni-
form grid size h has been �xed and the computations have been performed, by varying the
time step, at di�erent Courant numbers. Consequently, in order for those LTE terms propor-
tional to �tO(h2), to be smaller than those �tO(�t2), in a suitable range of �t¿h, a grid
size �x=�y= h=10−2 (629× 629 points) was chosen. Nevertheless, one must carefully
perform the accuracy analysis when �t¡h. In fact, as the derivatives of the (27) are of
unitary order of magnitude, a leading term in the LTE remains proportional to h2 and will
produce, apparently, a monotonic �rst order convergence of the splitting error curve. This
appearance can create some confusion in the analysis but it must be clear that the �rst order
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Figure 5. Analysis of the accuracy order for the FTSM based on AB=CN time inte-
gration and second order FV discretization. Curve 1: the errors, computed in the L∞
norm in the domain �1, are shown versus the time step in a double logarithmic scale

only for the u velocity component (the error on v being the same).

slope appearing for small �t is not the real accuracy of the FTSM but is only a consequence
of having maintained h �xed.
In order to highlight the features of the methodology �rst for the case without con�nement

approximations, a series of computations is performed for two-periodical boundary conditions.
The velocity v∗n+1 is computed from (31)1 by means of the Thomas algorithm and the pressure
equation (31)2 is solved by means of a line Gauss–Seidel solver. Furthermore, in order to
assess the second order time accuracy without taking care of stability constraints, the errors
have been computed in the L∞ norm after a single time step and are reported in Figure 5
versus the time step �t in a double logarithmic scale. The �gure illustrates all the previously
discussed salient features: the initial slope 3 of curve 1 con�rms the second order accuracy of
the pressure-free projection method but when the LTE analysis is performed for �t¡h then
the slope clearly changes from 3 up to a monotonic �rst order slope. This fact well accords
to the fact that the discretization error becomes �t times the leading term, proportional to
h2, in the LTE. In our knowledge, this LTE analysis of the fully discretized FTSM was not
considered elsewhere.
As a matter of fact, the conclusion that the pressure-free FTSM along with the AB=CN

discretization remains second order accurate (or equivalently the velocity error is O(�t3) in a
step) is not new in the case of periodical boundary conditions. Already in Reference [8] this
result was highlighted while deducing that it is due to the fact that the discrete operators ∇̂2

and ∇̂ do commute when periodic boundary conditions are in e�ect. Conversely, in order to
obtain a third order slope on the discretization error, this property does not appear from the
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present analysis. Since in Reference [8] a �rst order slope was shown in a non-periodic case,
it was therein proposed a correction that should only improve the pressure accuracy, not the
velocity one. Owing to the lack in the exact knowledge of those computational conditions, an
unequivocal explanation of such reported di�erences in the velocity errors curves (especially
the reported �rst order slope) cannot be herein addressed. However, it is worthwhile observing
that, instead of an analytical solution, the author used as comparison that one obtained on
the �nest grid. This kind of comparison can produce a slope of the error curve not consistent
with the actual accuracy of the LTE. Furthermore, it was not considered the possible e�ect,
produced by the constant grid size, which causes the appearance of the �rst order convergence.
On the other hand, in regard to the accuracy study of the pressure-free projection method

reported in Reference [21], it is stated for the assignment of v∗ on the frontier ‘using the
normal mode analysis that this is also a necessary condition for the second order accuracy’
and that ‘: : : is surprising that projection method III [6] does not obtain full second order
accuracy’. In the present study, why the adoption of (6) for deriving intermediate bound-
ary conditions would always lead to �rst order accurate velocity computation, was clearly
explained.

5. THE LTE ANALYSIS OF THE SPACE–TIME DISCRETIZED FTSM; EFFECTS OF
THE APPROXIMATE BOUNDARY CONDITION

From the analysis of the original Chorin’s method, adopted along with homogeneous Dirichlet
boundary conditions, it is well known the presence of a numerical boundary layer that is
generated by mismatch in the boundary conditions for v∗ from the global error terms. Then,
it was shown [11–21] how the FTSM never allows us to simultaneously satisfy both normal
and tangential velocity conditions on the boundary. The most adopted remedy is simply to
reset, after each time step, the tangential component to its correct physical value on the
boundary but it was also shown why such a procedure remains low order accurate [17] as
well as it can produce a reduction in the smoothness of the solution close to the boundary.
In fact, even if v∗n+1 is only a mathematical position for the updated state vector de�ned in

Equation (31)1, approximate numerical boundary conditions are someway required owing to
the parabolic character of the semi-implicit prediction equation. Therefore, while the projection
step (31)2;3;4 imposes the correct normal velocity values along the boundaries, major care
must be devoted to the assignment of the tangential conditions in (31)1 as Equation (31)5
cannot allow us further correction. According to the remark in Reference [21], the boundary
condition for determining v∗n+1 must be consistent to the projection step although at the time
they are applied, the function ∇〈�〉n+1 is not yet known. In order to overcome the problem
of approximating the pressure gradient along the boundary, a new proposal of a consistent
boundary condition equation, which is based solely on the velocity �eld, is herein derived.
This equation, when associated with the AB=CN prediction equation, accomplishes the goal of
the closure of the problem with full second order accuracy. In our knowledge, this procedure
is new in the literature and can be easily implemented for con�ned �ows.
On the other hand, since many years ago [27], the determination of the correct intermediate

boundary conditions is a well-known problem in factorization methods but it was often under
valuated in practical computations. It is usually reputed that it is su�cient to have boundary
conditions which are one order of accuracy lower than the LTE into the interior as was shown
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for hyperbolic equations in Reference [28] or as it results from maximum principle for linear
parabolic equations. However, practical computations found that such lower order of accuracy
can lead to a large increasing of the LTE. Regardless of the rate of convergence, the errors on
any grid points may be greater than required and this fact can become unacceptable in some
speci�c kind of computations (see Section 6). The order of accuracy will be congruent to
the global one in the interior, provided that correct boundary conditions v∗n+1@ are assigned in
solving (31)1: this is the LTE analysis of type (b) which was mentioned in the Introduction
and is now developed. Moreover, the role of the location of the boundary is investigated;
some computations with Dirichlet boundary conditions were performed also in a particular
�nite domain wherein the decomposition is no longer orthogonal and the pressure gradient
has a non-vanishing normal component.

5.1. Taylor series-based boundary conditions

According to the proposal in Reference [6], v∗ is supposed to be a continuous function of time
and approximate boundary conditions for it were deduced by using a second order accurate
Taylor expansion about the time t n

v∗n+1 = v∗n +�t
@v∗

@t

∣∣∣∣n +O(�t2)= vn +�t (@v@t +∇p′
)∣∣∣∣n +O(�t2)

= vn+1 +�t∇〈�〉n +O(�t2)⇒ v∗n+1@ = vn+1@ +�t∇〈�〉n@ (32)

In this expression, the knowledge of ∇〈�〉n@ is required therefore, it must be retained for
this aim in each time step. However, this kind of boundary condition has some incongruent
implication:
(I) Expansion (32) is not congruent to the order of the time integration (13) that is O(�t3)

in a single time step. It is expected that the LTE will degrade to �rst order†† magnitude
near the boundaries since the projection step will enforce @n�n+1 = @n�n= · · · @n�0 on @, a
numerical boundary layer [11–21] is generated. This fact can deteriorate the solution into the
interior, although the convergence of discrete FTSM was proved [4].
(II) Expansion (32) was derived by means of the di�erential equation @tv∗=R∗, being

R∗ expressed by Equation (6). Thus, even if the in�nite expansion (20) were adopted, the
resulting expression for v∗n+1@ would not correspond to that required as consistent boundary
condition for the AB=CN integration. This conclusion appears now straightforward in the
light of the previous analyses: again, the problem results into the mismatch of the vector v∗

for the discrete or continuous approach. Such mismatch is resolved by the projection step
with respect to the normal component, nothing being corrected for what it regards with the
tangential component.
(III) It is easy to verify that expansion (32), if truncated to the second order, can not take

any advantage by adopting R∗ expressed by Equation (7); in fact, Equations (6) and (7) are
coincident at time t n the �rst di�erence appearing from the time derivative @tR∗.
From such issues, it follows that the second order term must be retained into the expansion.

††In some papers, analysing Stokes �ows, the resulting order of accuracy is reported as O(�t1=2) because of the
adopted constant rate �t=h2.
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5.2. A consistent and accurate intermediate boundary condition expression and its space
discretization

An original strategy to derive an accurate expression for v∗n+1@ is now illustrated. The starting
point of the analysis is that the vector v∗n+1@ must be consistent both to the AB=CN discretized
equation (31)1 and to the projection step (31)2;3;4 while, at the time it must be applied, the
function ∇〈�〉n+1 is not yet computed.
Consider Equation (31)1 so that, whatever �k is, the resulting di�erential equation with

the space operators in continuous form, has a solution expressed according to the point-wise
relation:

v∗n+1 =
(
I − �t

2Re
@2

@y2

)−1{[
I +

�t
2Re

(
@2

@y2
+ 3

@2

@x2

)]
vn

+
�t
2

(
3Rnc −Rn−1c − 1

Re
@2vn−1

@x2

)}
=
(
I +

�t
2Re

@2

@y2
+
�t2

4Re2
@4

@y4
+ · · ·

)
q′

⇒ v∗n+1@ =
(
I +

�t
2Re

@2

@y2
+
�t2

4Re2
@4

@y4

)∣∣∣∣
@
q′ =

{(
I +

�t
Re

@2

@y2
+
�t2

4Re2
@4

@y4

)
vn

+
(
�t
2
+
�t2

4Re
@2

@y2

)[
1
Re

@2

@x2
(3vn − vn−1) + 3Rnc −Rn−1c

]}∣∣∣∣
@

(33)

The expression derived on the boundary was the limiting value, obtained from the interior,
wherein only terms up to O(�t2) will be retained into the approximate inversion. The attrac-
tive feature of the proposal is that, although the gradient of � along the boundary no longer
appears, the expression (33) is consistent with Equations (30), as mathematically proved in
Appendix B.
The space discretization of the derivatives in Equation (33) requires a proper backward=for-

ward stencil to take into account for the accurate evaluation of v∗n+1@ along the boundary. Since
the asymmetry of the stencil can alter the resulting expression of the local truncation error,
in order to brie�y clarify this issue let us consider the linear di�usion equation @t’= @xx’.
When it is discretized by means of the classical CN scheme in time and central second order
discretization in space, the LTE results O(�t2; h2), according to the modi�ed equation:

@’
@t

− @2’
@x2

=
(
�t2

12
@6’
@x6

+
h2

12
@4’
@x4

+
�th2

24
@6’
@x6

+ · · ·
)

(34)

On the other hand, by adopting the approximate inversion (33) one has ’n+1i =(1+�t@xx+
�t2=2@xxxx)i’n, which could be discretized with a central second order accurate formula (again,
shift notation is adopted), leading to the scheme:

’n+1i =
[
I +�t

(Eh − 2I + E−h)
h2

+
�t2

2
(E2h − 4Eh + 6I − 4E−h + E−2h)

h4

]
’ni (35)
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while, a backward second order formula, which is suitable to be adopted for discretizing (33)
on to the boundary, leads to

’n+1i =
(
I +�t

2I − 5E−h + 4E−2h − E−3h

h2

+
�t2

2
3I − 14E−h + 26E−2h − 24E−3h + 11E−4h − 2E−5h

h4

)
’ni (36)

Accordingly, one gets the following LTE:

@’
@t

− @2’
@x2

=
(
−�t

2

6
@6’
@x6

+
h2

12
@4’
@x4

+
�th2

12
@6’
@x6

+ · · ·
)

(37)

for Equation (35) and

@’
@t

− @2’
@x2

=
(
�t2

6
@6’
@x6

− 11
12
h2
@4’
@x4

− 17
12
�th2

@6’
@x6

+ · · ·
)

(38)

for (36), respectively. These expressions show that, if one performs an accuracy study for
vanishing �t but by taking a constant mesh size h, one observes a discretization error curve
according to a polynomial of the type (a�t+b�t2+c�t3+· · ·) and, however, a �rst order slope
for small �t. The way in which the error curve tends to �rst order slope, will depend on the
coe�cients into the modi�ed equation that are di�erent for central or backward discretization.
However, this appearance is common also for the classical CN discretization, as highlighted
by Equation (34), and the discretization (36) lead to a congruent evaluation on the boundary.
Considering, for example, an upper boundary at j= JB, one gets

v∗n+1i; JB = q̂′i; JB +
�t

2Re�y2
(2I − 5E−�y + 4E−2�y − E−3�y)i; JBq̂′ +

�t2

4Re2�y4

× (3I − 14E−�y + 26E−2�y − 24E−3�y + 11E−4�y − 2E−5�y)i; JBvn (39)

wherein q̂′ is the RHS of (31)1 for all the interior points and q̂′i; JB is that one evaluated on a
backward stencil. Observe that in some cases one can suppose su�ciently correct to disregard
the terms O(�t2=Re2) and simplify (40).

5.3. Results

In order to assess both the general analyses and the validity of our proposal, the vortex decay
problem is now resolved prescribing several combinations of the boundary conditions. First
the problem is solved in �1 along with Dirichlet boundary conditions assigned at y=±�
while retaining the periodicity at x=±�. Exactly the previous mesh size h and time steps
have been adopted and the errors, obtained again in the L∞ norm, are evaluated after a single
time step onto the boundary points, too. In the �rst runs, the �rst order boundary condition
(32) are tested since they are those proposed in Reference [6], analysed in many papers
[11–21] and adopted in many simulations. In this case, the error convergence rates for u
and v are reported in Figure 6 versus the time step �t, in a double logarithmic scale. The
plot shows only a second order slope before the curves tend towards the �rst order one for
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Figure 6. Analysis of the accuracy order for with the FTSM based on AB=CN time integration and
second order FV discretization and Dirichlet boundary conditions [6]. The errors, computed in the L∞,
norm in the domain �1, are shown versus the time step in a double logarithmic scale for both u

(curve 1) and v (curve 2) velocity components.

�t¡h con�rming a �rst order accurate LTE. It could be erroneously deduced that the �rst
order accuracy depends on the fact that the Taylor series (32) was truncated to O(�t2) hence,
another test has been performed along with the boundary conditions still deduced from (32),
but while taking into account terms up to O(�t3) and expressing @ttv∗ from Equation (21).
As a result, no relevant modi�cation in the error slope appears in Figure 7. Both curves have
second order slopes still con�rming the fact that the di�erential equation for v∗ proposed in
Reference [6] is not congruent to that required by the AB=CN scheme.
Finally, the computation was repeated but this time by adopting the AB=CN scheme asso-

ciated to our proposal provided by Equation (33) and forward=backward discretization close
to the boundary. Now, both curves in Figure 8 have third order slopes con�rming the actual
second order time accuracy of the pressure-free FTSM. The third order slope, de�nitively
demonstrates that, the AB=CN scheme requires congruent boundary conditions otherwise, the
updated tangential velocity component is a�ected by a �rst order LTE.
It is well known that the order of accuracy k of a fully discretized scheme is de�ned as the

rate for which the LTE goes to zero according to C�tk (C is a constant), while maintaining
constant the ratio �t=h. Hence, a conclusive series of computations have been performed
at �t=h=10−2. Four computational grids have been adopted, with h=�=5; �=10; �=20; �=40

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:399–437



426 P. IANNELLI AND F. M. DENARO

Figure 7. Analysis of the accuracy for the FTSM based on AB=CN time integration and second order
FV discretization and Dirichlet boundary conditions based on expansion (32) truncated to O(�t3). The
errors, computed in the L∞ norm in the domain �1, are shown versus the time step in a double

logarithmic scale for both u (curve 1) and v (curve 2) velocity components.

respectively, while the discretization error is now computed in the L∞ norm at the �nal time
of T=�=2 and is reported in Figure 9, versus the grid size h in a double logarithmic scale. It
is clear that the slope 2 is now monotone according to the fact that �t=h= const:; of course,
as the accuracy analysis is performed at T =N�t the second order slope is consistent with
the O(�t3) of the discretization error in a single step.
It was already observed that in the �nite domain �1 the solution v and the pressure gradient

are (a priori) orthogonal in the sense of the inner product. Furthermore, the normal derivative
of the pressure �eld along the boundaries vanishes and the numerical boundary layer does
not entry into the velocity accuracy. In order to investigate the role of the normal pressure
derivative, as well as of the location of the boundary, some computations with Dirichlet
boundary conditions were performed also in the second �nite domain �2 = [0; �]× [0; 1]. Such
a domain was chosen since the decomposition (a;∇p′) is no longer a priori orthogonal (therein
it results

∫
�2
a · ∇p′ dV = − 0:510098e−6t) while n · ∇p′ �=0 along the boundary y=1 (see

Figure 1(b)). It is interesting to compare now the numerical results for both domains.
To this goal, the CN time integration is now applied also in x-direction and the intermediate

velocity is prescribed on all the frontier @�2. The two velocity components u∗ and v∗ assume
the meaning of tangential or normal component depending on the considered axis. The tested
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Figure 8. Analysis of the accuracy order for the FTSM based on AB=CN time integration and sec-
ond order FV discretization and Dirichlet boundary conditions (34). The errors, computed in the L∞
norm in the domain �1, are shown versus the time step in a double logarithmic scale for both u

(curve 1) and v (curve 2) velocity components.

expressions for computing v∗n+1@ are those according to these three di�erent methods:

(a) simply assigned as the new velocity value, i.e., v∗@ = v
n+1
@ (analysed for example in

References [6, 8, 11, 15, 17–21]) as such condition is still considered valid for accurate
computations (see Reference [29]);

(b) the values are assigned according to the second order Taylor series (32) i.e. v∗n+1@ = vn+1@
+�t∇〈�〉n@ (see Reference [6]);

(c) Equation (33) is evaluated and assigned on the boundary;

The number of grid points is (315× 101), i.e. one has the same computational grid size
h of the previous computations, and the splitting error was again computed, after a single
time step, in the L∞ norm. The error evaluation includes the boundary points along which
the tangential velocity component is e�ectively computed by means of (31)5. The results are
shown, for each one of the three cases, in the Figures 10(a)–10(d) concerning the errors on
u; v; @x〈�〉; @y〈�〉, respectively. It clearly appears that the best accuracy is achieved by means
of the present proposal. It is worthwhile remarking for case (a) that the �rst order slope of
the velocity error curve indicates an O(1) LTE, namely a non-consistent term.
Other computations were performed (not reported here) in these two di�erent �nite domains

with a mixture of boundary conditions (b) and (c). These results con�rmed that, when the
decomposition is orthogonal, one could simply adopt anyone of normal condition (a) or (b)
provided that the tangential condition is correctly derived from (c). In fact, the orthogonal
projector allows us both to adjust the normal component and to recover fully second order
accuracy into the interior. Conversely, when the decomposition is not orthogonal, this mixture
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Figure 9. Analysis of the accuracy order for the FTSM based on AB=CN scheme and second or-
der FV discretization and Dirichlet boundary conditions at a constant ratio �t=h=10−2 (i.e. con-
stant Courant number). The errors, computed in the L∞ norm in the domain �1 at time T =�=2,
are now shown versus the grid sizes h in a double logarithmic scale for both u (curve 1)

and v (curve 2) velocity components.

of boundary conditions results no longer applicable thus, in order to get a third order slope of
the velocity error curves, is necessary to adopt condition (c) on the frontier for both velocity
components.
As a �nal comment, it can be noticed that proposal (33) allows us to get a third order

accurate tangential velocity in one time step but never the exact value. Nevertheless, after the
projection step, the strategy to reset the tangential value to its correct one was tested in many
performed simulations to produce a regular behaviour. It can be shown that by introducing
@tv∗ expressed by Equation (7) into the third order Taylor series one gets v∗n+1@ = vn+1@ +
�t(I + (�t=2)Ld)∇p′|n@ + (�t2=2)@t∇p′|n@ + O(�t3). This expression can be considered the
third order accurate counterpart of the condition proposed in [6] but, to be usefully discretized
and computed on the boundary, it must be further manipulated. This other way to proceed is
object of other study as expression (33) is fundamentally an explicit-based formulation and
stability constraints, as well as the starting values construction (e.g. for impulsively starting
�ows) has to be ad hoc studied.

6. PERSPECTIVE STUDY IN THE ADOPTION OF THE PRESSURE-FREE FTSM
INTO LARGE EDDY SIMULATION

A reliable behaviour of our proposal is that no approximation of the pressure gradient along
the boundary is required and the expression (33) is simple to manage. Although the tangential
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Figure 10. (a) Analysis of the accuracy order for the FTSM based on AB=CN time integration and
second order FV discretization and Dirichlet boundary conditions prescribed on the whole boundary
@�2 according to the cases (a)–(c). The errors, computed in the L∞ norm, are shown versus the time
step in a double logarithmic scale for the u velocity components. (b) The errors, computed in the L∞
norm, are shown versus the time step in a double logarithmic scale for the v velocity components. (c)
The errors, computed in the L∞ norm, are shown versus the time step in a double logarithmic scale for
the gradient component @x〈�〉. (d) The errors, computed in the L∞ norm, are shown versus the time

step in a double logarithmic scale for the gradient component @y〈�〉.
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Figure 10. (Continued).

velocity component remains always approximated, it has now an O(�t3) error. Hence, the
strategy to reset, after each time step, the value to the correct one leads to a most likely
regular behaviour, as we tested in many performed simulations.
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In our knowledge, there are not published papers with studies on the main e�ects due to the
coupling between the splitting methodology and the large eddy simulation (LES) equations
modelling. Such an analysis is fundamental for our general purposes that consist in develop-
ing a high order formulation for LES of turbulent �ows based on a fractional methodology.
In a series of papers on the local average method [30–32], the role of the higher accuracy
order of the resolved (�ltered) variable, with respect to the unresolved part, was investi-
gated. Furthermore, a proper de-convolution procedure was proposed which leads to de�ne a
new di�erential balance equation for the evolution of a higher order �ltered variable, say ṽ
(the tilde indicates now a �ltering). At present, a fourth order accurate spatial discretization
within the pressure-free FTSM is currently in progress [33]. In the framework of the so-called
implicit structural models [34], our evolution equation for ṽ corresponds to solve the orig-
inal top-hat �ltered LES equations with a generalised scale-similarity model. It is generally
assumed in LES that the �ltering e�ect associated to the time step can be disregarded, pro-
vided that the Courant number is su�ciently small [34]. Often, the AB=CN integration and
the boundary conditions (32) is used in LES for solving the �ltered equations thus, it can
be debatable that the issue of the fractional decoupling has not been su�ciently analysed in
LES related publications. In the light of the present analysis, the �rst order error near to
the boundary, for example in a channel �ow simulation, has to be avoided because it can
lead to dramatic e�ects in the model integration. In fact, the sub-grid scale (SGS) model is
introduced in the �ltered momentum equation and it accounts for an additional tensor term,
say T, according to (if �ltering and derivatives do commute)

@ṽ
@t
+∇ · ( ˜̃vṽ) +∇p̃′=∇ · (�∇ṽ) +∇ · ( ˜̃vṽ − ṽv)≡∇ · (�∇ṽ) +∇ · T̃ (40)

that, owing to the speci�c form of the SGS stress tensor (e.g. and eddy viscosity model),
can be integrated within the CN scheme while the AB integration applies on the other terms.
As an example of this splitting methodology, it follows that the �ltered prediction equation
writes as[

I − �t
2

∇ · (�LES∇)
]
v∗n+1=

[
I +

�t
2

∇ · (�LES∇)
]
ṽn

− �t
2
[3∇ · (˜̃vnṽn)−∇ · ( ]ṽn−1ṽn−1)]; x∈�

v∗n+1@ =f(ṽ); x∈ @�

(41)

being �LES the total viscosity (that is a function of time to be considered in the Taylor
expansion) and v∗n= ṽn ful�lling the incompressibility constraint; Equation (41) clari�es the
meaning of v∗n+1 that accounts for both �ltering and SGS modelling. Thus, by particularizing
(7), the di�erential equation for v∗, consistent to LES equation (41), is expressed as

@v∗

@t
= −∇ · ( ˜̃vṽ) +∇ · (�LES∇ṽ∗) (42)

and, accordingly, the congruent boundary condition for (41) has to be derived similarly to
Equation (33); moreover, the actual pressure gradient is approximated by a relation that
particularizes (16).
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Conversely, if one adopt the AB integration also for the SGS term the entire FTSM must
be analysed in a di�erent way for deriving appropriate boundary conditions for v∗. Owing to
the consequent linear system, this appears the most opportune strategy, as well.
However, all these issues require future studies as they involve the simultaneously appear-

ance of �ltering and modelling contribution. In our opinion, the importance of an analysis of
the lack in the accuracy of tangential velocity component, associated to the projection meth-
ods in LES for con�ned �ow, has not been su�ciently highlighted. This analysis is currently
under development and this paper introduces the next framework issues.

7. CONCLUSIONS

In this paper, the analysis of the splitting error for both the continuous and discrete pressure-
free FTSM, along with a proposal for consistent intermediate boundary conditions, was pre-
sented. It was clearly shown that the Local Truncation Error can be estimated from the
expressions of the splitting errors as they are related to each other by the time step. The anal-
ysis of the error was subdivided into that one which is inherent to the splitting methodology
and in that one due the semi-implicit AB=CN scheme associated to intermediate boundary
conditions. The error expressions were �rst derived in the physical space by means of a
theoretical analysis and then con�rmed in numerical experiments.
In fact, it was shown that the adoption of the AB=CN scheme allows us to really get a

high accuracy order without requiring any numerical correction in the method. In particular,
the analysis showed why the AB=CN scheme produces an O(�t3) splitting error in one time
step as a consequence of the consistent time discretization of the gauge equations. However,
the pressure gradient is the only involved variable that is �rst order approximated. In this
way, it was highlighted which one between the two proposed continuous equations @tv∗=R∗

must be adopted for expressing the correct intermediate boundary conditions. In fact, it was
shown that the semi-implicit AB=CN scheme, along with improper boundary conditions, dra-
matically a�ects the global accuracy of the FTSM. Therefore, after having demonstrated the
proper consistent di�erential equation, an original proposal consisting in a congruent boundary
condition expression is herein derived, ful�lling the goal of accomplishing the closure of the
problem with fully accuracy. In our knowledge, this procedure is new in the literature and
can be easily implemented for con�ned �ows.
The numerical accuracy study was performed, for all cases, in the L∞ of the splitting

errors obtained with reference to the exact 2-D solution representing periodical vortex decay
into the whole real space. Furthermore, while assigning Dirichlet boundary conditions two
di�erent �nite domains were adopted; in particular, both cases of boundary locations having
a vanishing and not vanishing normal component of the pressure gradient are considered (i.e.
orthogonal and not decomposition). By summarizing the results of this study in terms of the
LTE, the numerical accuracy analysis can be two-folds performed: either by taking constant
the mesh size or the Courant number (CFL). In the �rst case, a description of a possible
erroneous interpretation of the results discussed in Reference [8] is given. The accuracy of
the method is formally de�ned by the LTE magnitude order that, multiplied by the time step,
provides the actual slope of the discretization error curve. It is clearly shown why, by taking
constant the mesh size, one veri�es a third order slope only for certain time steps �t, then a
transition to monotonic �rst order slope is caused by the O(�th2) term in the splitting error
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(i.e. a constant contribution of the spatial term in the LTE). This is the correct convergence
error behaviour in the L∞ norm that one expects as a result of the time-space discretized
method. Conversely, by taking the CFL constant, the slope is monotonically third order for
a second order spatial discretization. Many computations demonstrated that our proposal is
e�cient and accurate and the goal of adopting the pressure-free method based on AB=CN
scheme with fully second order accuracy is reached.
Finally, a future research to retain global high accuracy in the application of LES method-

ology on Navier–Stokes system is addressed. In fact, the decoupling can alter the form of
the splitting error and cause great problems in evaluating turbulence modelling. This is the
guideline that can be proposed for the next studies.

APPENDIX A: GENERAL DERIVATION OF THE SPLITTING ERROR

For addressing this issue in general, consider the simple linear convection–di�usion–production
equation for a scalar variable ’

@’
@t
=∇ · (−v’+ �∇’) + �(’)= [∇ · (−v+ �∇) + P]’≡

Lc + Ld︸ ︷︷ ︸
L

+P

’ (A1)

where � constant di�usivity coe�cient, L and P suitable operators acting on ’ if they are
not dependent on time, one derives also:

@2’
@t2

=
@
@t
[(L+ P)’]= (L+ P)

@’
@t
=(L+ P)[(L+ P)’]= (L+ P)2’

...

@k’
@tk

=(L+ P)k’

(A2)

having adopted a symbolic power of operators. By exploiting a Taylor series about the time
t n and by introducing the de�nition of exponential series of an operator, one has the exact
solution of (A1) expressed at time t n+1 according to [22]

’n+1 =’n +�t
@’
@t

∣∣∣∣n + �t22 @2’
@t2

∣∣∣∣n + · · · =’n +�t(L+ P)’n + �t
2

2
(L+ P)2’n + · · ·

=
[
I +�t(L+ P) +

�t2

2
(L+ P)2 + · · ·

]
’n

=
∞∑
j=0

�tj

j!
(L+ P)j’n≡ e�t(L+P)’n (A3)
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wherein e�t(L+P) is the solution operator for Equation (A1). As an example of the splitting
methodology, one could �rst perform the calculation of the convective–di�usive terms and
then that of the forcing one:

’∗ =
∞∑
j=0

�tj

j!
Lj’n≡ e�tL’n

’∗∗ =
∞∑
j=0

�tj

j!
Pj’∗ ≡ e�tP’∗=e�tP(e�tL’n) (A4)

One de�nes the consequent splitting error as

es ≡ ’n+1 − ’∗∗=(e�t(L+P) − e�tPe�tL)’n=
{[
I +�t(L+ P) +

�t2

2
(L+ P)2 + · · ·

]

−
(
I +�tP +

�t2

2
P2 + · · ·

)(
I +�tL+

�t2

2
L2 + · · ·

)}
’n

=
{[
I +�t(L+ P) +

�t2

2
(L2 + LP + PL+ P2)

]

−
[
I +�t(L+ P) +

�t2

2
(L2 + 2PL+ P2)

]}
’n + · · ·

=
[
�t2

2
(LP− PL)

]
’n +O(�t3)=�tO(LTE) (A5)

that vanishes if the operators L and P do commute (i.e. if P does not depend on x) otherwise,
one gets es=�tO(LTE) standing LTE for the local truncation error associated to the splitting,
whose order of magnitude de�nes the accuracy of the method.
It is worthwhile remarking that the splitting error (A5) will have a second order convergence

rate in a single time step which one can accumulate to an O(�t) after N =T=�t time steps to
reach some �xed time T . The Strang splitting [35] is a particular modi�cation of the fractional
method that allows us to recover second order accuracy for operators with more general
properties. The idea is to solve the �rst sub-problem over only a half time step then use the
solution for a full time step on the second sub-problem; �nally the third step is again performed
over a half time step. For non-linear equations, the method remains second order accurate
on smooth solutions [22] but, generalizations to systems of conservation laws (e.g. Navier–
Stokes), must account for other constraints necessary to obtain a unique entropy-satisfying
(weak) solution [36]. It means, for example, that the use of backward partial time-steps is
constrained within thermodynamic postulates on to the non-negative entropy production. This
analysis is out of the aims of the paper and the splitting errors that will be evaluated in
the following sub-sections are those speci�c to the projection methods for NS equations for
incompressible �ows.
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APPENDIX B: PROOF OF CONSISTENCY FOR THE INTERMEDIATE
BOUNDARY CONDITION

The consistency of our proposal (34) can be reported into the framework of the analysis of
the gauge equation, similarly to what performed in Section 4.1.2; now, one has to consider
instead of Equation (7), the function R∗=Lcv+ (@xxv+ @yyv∗)=Re≡ (Lc + Ldx)v+ Ldyv∗ (the
di�usion operator was split along the two directions) and use its time derivative into the third
order Taylor series, obtaining:

v∗n+1 = v∗n +�t
@v∗

@t

∣∣∣∣n + �t22 @2v∗

@t2

∣∣∣∣n +O(�t3)
= v∗n +�tR∗|n + �t

2

2
@R∗

@t

∣∣∣∣n +O(�t3)
= v∗n +�tR∗|n + �t

2

2

[
@Lc
@t
v+ (Lc + Ldx)

@v
@t
+ Ldy

@v∗

@t

]∣∣∣∣n +O(�t3)
= v∗n +�tR∗|n + �t

2

2
{−∇ · [(R+ P)v] + (Lc + Ldx)(R+ P) + LdyR∗}|n +O(�t3)

= vn +�tRn +
�t2

2
{−∇ · [(Rn + Pn)vn] + (Lnc + Ldx)Pn + LnRn}+O(�t3)

= vn +�tRn +
�t2

2
{−∇ · [(Rn + Pn)vn] + Ln(Rn + Pn)− LdyPn}+O(�t3) (A6)

and compare the expression to that corresponding to our proposal (33)

v∗n+1 =
(
I +

�t
2
Ldy +

�t2

4
L(2)dy

)

×
{(
I +

�t
2
Ldy

)
vn +

�t
2
[Ldx(3vn − vn−1) + 3Lncvn − Ln−1c vn−1]

}

=
(
I +

�t
2
Ldy

)(2)
vn +

�t2

4
L(2)dy v

n +
(
�t
2
+
�t2

4
Ldy

)
× (3Ldxvn − Ldxvn−1 + 3Lncvn − Ln−1c vn−1) +O(�t3)

=
(
I +�tLdy +

�t2

2
L(2)dy

)
vn +

(
�t
2
+
�t2

4
Ldy

)
[2(Ldx + Lnc)v

n

+�tLdx
@v
@t

∣∣∣∣n +�t @(Lcv)@t

∣∣∣∣n]+O(�t3)
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=
(
I +�tLdy +

�t2

2
L(2)dy

)
vn +�t(Ldx + Lnc)v

n

+
�t2

2

[
Ldx

@v
@t

∣∣∣∣n + @Lcv
@t

∣∣∣∣n + Ldy(Ldx + Lnc)vn]+O(�t3)
= vn +�tRn +

�t2

2
{L(2)dy vn + (Ldx + Lnc)(Rn + Pn)−∇ · [(Rn + Pn)vn]

+Ldy(Rn − Ldyvn)}+O(�t3)

= vn +�tRn +
�t2

2
{(Ldx + Lnc)(Rn + Pn)−∇ · [(Rn + Pn)vn] + LdyRn}+O(�t3)

= vn +�tRn +
�t2

2
{Ln(Rn + Pn)−∇ · [(Rn + Pn)vn]− LdyPn}+O(�t3) (A7)

demonstrating that (A7) and (A6) are exactly the same.
The consistency of (33) towards the projection problem (30) is shown by the fact that by

taking the divergence one gets by de�nition the Poisson equation in 〈�〉 being:

∇2〈�〉n+1 = 1
�t

∇ · v∗n+1 = 1
�t

∇ ·
(
I +

�t
2
Ldy +

�t2

4
L(2)dy

)
q′ (A8)

associated to the boundary condition n · ∇〈�〉n+1@ = n · (v∗n+1@ − vn+1@ )=�t ensuring the existence
and uniqueness of the solution. By simply integrating over �k and applying the Gauss theorem,
the exact integral form of Equation (30) is obtained.
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